Expectation-Maximization Binary Clustering for Behavioural Annotation
نویسندگان
چکیده
منابع مشابه
Expectation-Maximization Binary Clustering for Behavioural Annotation
The growing capacity to process and store animal tracks has spurred the development of new methods to segment animal trajectories into elementary units of movement. Key challenges for movement trajectory segmentation are to (i) minimize the need of supervision, (ii) reduce computational costs, (iii) minimize the need of prior assumptions (e.g. simple parametrizations), and (iv) capture biologic...
متن کاملExpectation Maximization for Clustering on Hyperspheres
High dimensional directional data is becoming increasingly important in contemporary applications such as analysis of text and gene-expression data. A natural model for multi-variate directional data is provided by the von Mises-Fisher (vMF) distribution on the unit hypersphere that is analogous to multi-variate Gaussian distribution in R. In this paper, we propose modeling complex directional ...
متن کاملChemical Reaction Algorithm for Expectation Maximization Clustering
Clustering is an intensive research for some years because of its multifaceted applications, such as biology, information retrieval, medicine, business and so on. The expectation maximization (EM) is a kind of algorithm framework in clustering methods, one of the ten algorithms of machine learning. Traditionally, optimization of objective function has been the standard approach in EM. Hence, re...
متن کاملExpectation maximization over binary decision diagrams for probabilistic logic programs
Recently much work in Machine Learning has concentrated on using expressive representation languages that combine aspects of logic and probability. A whole field has emerged, called Statistical Relational Learning, rich of successful applications in a variety of domains. In this paper we present a Machine Learning technique targeted to Probabilistic Logic Programs, a family of formalisms where ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS ONE
سال: 2016
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0151984